EXPLORACION MINERA Y APOYO INFRAESTRUC-TURAL EN VARIAS RESERVAS DEL ESTADO.

I N D I C E

<u>INDICE</u>

	Págs.
1 INTRODUCCION	1
1.1. ANTECEDENTES	2
1.2. OBJETIVOS	3
1.3. METODOLOGIA DEL TRABAJO	4
1.4. EQUIPO DE TRABAJO	5
1.5. RESUMEN ESTADISTICO	6
2 <u>INVESTIGACION GEOLOGICO MINERA</u>	7
2.1. AREA SO DE GUIJO DE CORIA	8
2.1.1. <u>Calicatas</u>	9
2.1.1.1. Calicata GC-1	9
2.1.1.2. Calicata GC-2	10
2.1.1.3. <u>Calicata GC-4</u>	11
2.1.1.4. <u>Calicata GC-4</u>	12
2.1.2. <u>Muestras</u>	12
2.1.2.1. <u>Calicata GC-1</u>	13
2.1.2.2. <u>Calicata GC-2</u>	15
2.1.2.3. <u>Calicata GC-3</u>	16
2.1.2.4. <u>Calicata GC-4</u>	17
2.2. AREA RESERVA "LA CODOSERA"	19
2.2.1. Investigación del eluvion coluvió	<u>ón</u>
Area Cerro de los Algarbes	19
2.2.1.1. Preparación de muestras	
Metodología	22

		2.2.1.3.	Valora	ción c	del_cor	ntenido	en oro	25
		2.2.1.4.	El_oro	_libre	2	• • • • • •	• • • • • • •	27
<u>A</u> <u>N</u>	<u>1 Ε Σ</u>	<u> </u>						
Νō	1	DESCRIPCION F	ocillos	. CERI	RO DE L	OS ALGA	RBES	
Μō	2	RESULTADOS AN	MALISIS.	ORO (CONTEN	IDO EN	LAS ROCAS.	CERRO
		DE LOS ALGARE	BES					
Νō	3	RESULTADOS DE	ANALIS	IS. OF	RO LIBI	RE, CEF	RO ALGARBES	5
Νō	4	RESULTADOS DE	ANALIS	IS. CA	ALICATA	AS SO.	GUIJO DE CO	ORIA
<u>P I</u>	_ A I	1 0 S						
Mo	1 _	AREA GUIJO DE	CORTA	PT.ANO	DE S	TTHACTO	ON DE CALICA	ΑΤΑς
		CALICATA GC-1		1 13/11/) DL 0.	1101101	TO DE CHEEC	11710
		CALICATA GC-2						
		CALICATA GC-3						
		CALICATA GC-4						
Μō	6 . -	RESERVA LA CO	DOSERA.	AREA	CERRO	DE LOS	ALGARBES	
		PLANO DE SITU	JACION D	E POC	LLOS			
Μō	7	RESERVA LA CO	DOSERA.	AREA	CERRO	DE LOS	ALGARBES	

PLANO DE VALORACION DE ORO CONTENIDO

2.2.1.2. Resultado de análisis. Ley media

por muestra

Págs.

23

1.- INTRODUCCION

1.1. ANTECEDENTES

Como consecuencia de las actividades de exploración minera que el IGME viene desarrollando en las Reservas en favor del Estado denominadas "Ampliación al Subsector X" y "La Codosera" se seleccionaron una serie de areas anómalas en las que se pone en evidencia la posibilidad de encontrar concentraciones minables de oro, estaño y wolframio. En este orden de cosas y para conseguir los objetivos propuestos el IGME elaboró un proyecto denominado "Exploración Minera y apoyo infraestructural en varias Reservas del Estado" orientado a realizar campañas geoquímicas, cartografía geológico-minera, calicatas y pocillos -entre otras actividades.

El presente proyecto se enmarca dentro de - estas actividades y está concebido para suministrar la asis tencia técnica necesaria para cubrir los objetivos propues- tos.

En el Subsector X, en las fases previas de - la exploración se individualizó un área conocida como Guijo de Coria, sobre la que se implantó una red de geoquímica de suelos, sobre la base de los resultados obtenidos en 8 mues tras de mineralometría que cubrían toda la superficie sobre la que discurre el Arroyo de Peleas, y que presentaban abundante oro libre.

En la superficie que drena este arroyo y sus tributarios, la red de geoquímica estratégica se diseñó con un espaciado de 100 x 50 m habiendose definido sectores anó malos con contenidos en oro. Esto ha determinado la continua ción de la sistemática de exploración de cara a detectar el origen de las anomalías y cuantificar sus posibilidades, --

mediante la realización de 1200 m de excavación de calicatas con levantamiento geológico de sus paredes y toma de - muestras para su análisis por oro.

La Reserva del Estado denominada "La Codosera" está situada al NO de la provincia de Badajoz, al O de la ciudad de Alburquerque, habiendose detectado en su super ficie la existencia de cantidades variables de oro. Una de las zonas más prometedoras se denomina Cerro de Los Algar-bes y está situada al S de la Sierra de la Breña, al SO de la localidad de La Codosera. En ella y entre otras posibilidades se ha definido la existencia de un aluvial-coluvial -con una potencia entre 2 y 5 m y una superficie de 2 km cuadrados, así como un contenido geoquímico de 0,8 gr/t, lo que hace pensar que puede constituir un yacimiento en si mismo. Para llegar a confirmar esta hipótesis de trabajo se diseñó una malla de 25 pocillos en los que se han tomado muestras de 100 kilos que previa preparación en el Laboratorio del -IGME de Aldea Moret y separación de varias fracciones fueron analizadas por oro.

1.2. OBJETIVOS

Los objetivos finales del proyecto son poner de manifiesto el potencial aurífero de las zonas de las — áreas de SO del Guijo de Coria y del Cerro de los Algarbes, para lo cual se obtendrán los siguientes objetivos parciales:

- Recogida y análisis de 25 muestras de 100 kilos de los eluviales coluviales del Cerro de los Algar-bes con preparación de las muestras dividiendolas en varias fracciones según su mineralometría y separación de minerales pesados.

- Realización de 1200 m de calicatas en diferentes puntos del área del SO del Guijo de Coria y levan tamiento geológico de las mismas con toma sistemática de muestras de rocas contínuas, preparación de las mismas y -- análisis por oro.
- Tratamiento y estudio de los resultados con obtención de conclusiones.

1.3. METODOLOGIA DEL TRABAJO

En el área de SO de Guijo de Coria, se seleccionaron previamente los puntos en los que realizar los trabajos de excavación, habiendo seleccionado 4 en los que se calicatearon unos 300 a 400 m en longitud.

Una vez realizadas se procedió a su levanta-miento geologico y toma de muestras según rozas contínuas, seleccionado tres metros para cada una de ellas. El último trabajo de campo consistió en aterrar la excavación.

En el área del Cerro de Los Algarbes se seleccionaron 25 puntos coincidiendo con las estaciones de toma - de muestra de la campaña de geoquímica táctica realizada previamente y disponiendolas según una malla regular.

Mediante pala retroexcavadora se tomaron 100 kilos aproximadamente en cada pocillo que fueron enviados a los laboratorios que el IGME posee en Aldea Moret, para su tratamiento. En este se individualizó la fracción menor de -2 mm, la cual fué bateada para su análisis mediante amalgama ción, de cara a conocer la cantidad de oro libre existente. El rechazo de la batea fue secado y analizado mediante absorción atómica para conocer su contenido en oro.

Con la fracción mayor de 2 mm se procedió a su secado y molido para previo cuarteo y pulverización en TEMA proceder a su análisis químico por oro.

Mediante todo este procesado y análisis se - pretendía obtener la cantidad de oro libre susceptible de - aprovechamiento y el oro contenido en las rocas en sus diferentes granulometrías que habrá de ser recuperado mediante un método diferente de beneficio.

1.4. EQUIPO DE TRABAJO

Todos los trabajos descritos han sido realizados por un Equipo de Trabajo formado por técnicos especialistas de C.G.S., S.A. y los Laboratorios correspondientes, bajo la dirección y supervisión de D. Julio Liarte Hurtado Dr. - Ingeniero de Minas del IGME.

Los levantamientos geológicos y toma de muestras de las labores realizadas han sido llevados a cabo por D. José Luis Reyes García, D. Manuel Alonso García y D. Vi-cente Crespo Lara, Geólogos de la C.G.S., S.A.

La preparación de muestras ha sido realizada en los Laboratorios de Aldea Moret del IGME con la dirección de D. Fernando López Castañeda, Ingeniero Técnico de Minas y D. Vicente Membrillera, químico becario del IGME.

Los análisis por amalgamación de oro libre se han efectuado en los Laboratorios de U.E.R.T. en Huelva.

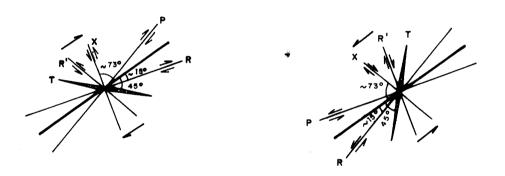
Los análisis químicos por oro mediante absorción atómica han sido llevados a cabo en los laboratorios de Watson Grey Ltd. en Madrid.

1.5. RESUMEN ESTADISTICO

La cuantificación de los trabajos realizados se presentan en el siguiente cuadro:

Area SO Guijo de Coria

Excavación	1.200 m
Levantamiento Geológico	1.200 m
Muestras tomadas	200 m
Análisis químico por oro	200 m
Area Cerro de los Algarbes	
Pocillos	25
Muestras de 100 kg	25
Análisis químicos	
- Oro libre	25
- Oro contenido en roca	50
Informe final	1


2.- INVESTIGACION GEOLOGICO MINERA

2.1. AREA SO DE GUIJO DE CORIA

Se seleccionó este área, en base a los resultados obtenidos en la campaña de mineralometría estratégica realizada en toda la superficie de la Reserva "Ampliación - al Subsector X" y la subsiguiente campaña de geoquímica táctica (suelos) cuyo perímetro define el área, y en donde se detectaron varias áreas anómalas.

Otro factor determinante para proseguir la investigación fué la determinación de alineamientos importan
tes mediante el uso de la teledetección, de tal manera que el cauce abierto por el arroyo de Peleas, puede estar condicionado por la presencia de fracturas con importantes componentes de cizalla.

En caso de que esto fuera así y considerando la fracturación que acompaña a los fenómenos de cizalla (Riedel) la disposición de la red de fracturas sería:

Esto justifica el que las direcciones de las calicatas de esta investigación se hayan programado en esta dirección

2.1.1. Calicatas

Sobre la base de la red de geoquímica realizada en el área de la fase previa y utilizando como base to pográfica la ampliación a escala 1:5000 de la fotografía -- aérea del arroyo de Peleas, a escala 1:18.000, se programaron cuatro calicatas en las zonas donde los valores anóma-los eran mas altos, entre los perfiles P y C', con una longitud total de 1413 m.

Las calicatas denominadas, de S a N, GC-1 a 4 en principio fueron programadas en dirección perpendicular - a los perfiles de geoquímica de suelos N-64º E, en la práctica, sin embargo, sufrieron algunas variaciones debido a dificultades sobre el terreno. Todas ellas se realizaron mediante una pala retroexcavadora, Poclarin 90, con un cazo de 1 m de anchura. En aquellos casos en que los materiales presenta ban una dureza excesiva se utilizó un martillo rompedor para ayudar a la realización de la zanja. En ningún caso se emplea ron explosivos.

2.1.1.1. Calicata GC-1

Proyectada para detectar el origen de las anomalías existentes entre los perfiles U y W, muestras 28,29 y 30 tiene una longitud de 300 m en dirección N $73^{\circ}E$ y una profundidad máxima de 1,70 m.

Esta calicata ha cortado un conjunto litológico perteneciente al C.E.G. con un claro predominio areniscoso en el cual hay intercalaciones más pelíticas de menor poten-cia. En total han aparecido 23 filones de cuarzo con potencias entre 1-2 y 10 cm, aunque también aparece un lentejón de cuarzo con una potencia aparente de 50 cm. La dirección de estos filones aunque difícilmente observable es sensiblemente normal a la de la calicata, N-140º a 160º E, y la mayoría de ellos son subverticales.

La estructura principal es la esquistosidad de primera fase hercínica que afecta igualmente a todas las litologías, en dirección próxima a N-S con buzamientos subverticales al W. La estratificación es difícilmente identificable.

A lo largo de la calicata se observan varias diaclasas en dirección $N-35^{\circ}$ a $50^{\circ}-E$ y subverticales.

2.1.1.2. <u>Calicata GC-2</u>

Programada para detectar el origen de las -- anomalías existentes entre los perfiles Y y C', muestras 19, 20 y 21, tiene una longitud de 365 m en dirección N 67º a - 69º E, y una profundidad máxima de 1,90 m.

Los materiales descubiertos por la calicata son rocas pelíticas y areniscosas con alguna intercalacion cuarcítica más escasa.

En total se han descubierto 14 filones de -- cuarzo con potencias entre 2-3 y 20 cm. La dirección de es-- tos filones es difícilmente observable, en algunos casos aparecen como simples lentejones subhorizontales.

La esquistosidad principal afecta por igual a todas las litologías siendo la dirección predominante -- N 165ºE con buzamientos subverticales. El paso gradual de unas litologías a otras hace difícil la observación de la estratificación.

Se observan algunas diaclasas en dirección - próxima a E-W con buzamientos subverticales.

2.1.1.3. Calicata GC-4

Proyectada para descubrir el origen de las - anomalías existentes entre los perfiles P y T, muestras -- 16, 17 y 18, tiene una longitud de 348 m, en dirección -- N 65 E con una profundidad máxima de 1,60 m.

En esta calicata se han cortado rocas pelíticas y areniscosas en una proporción similar.

En total se han cortado 12 filones de cuarzo con potencias entre 1-2 y 15 cm, existiendo uno, el nº 8, - con 60 cm de potencia. La dirección de estos filones, aunque se observa con dificultad es en la mayoría de los casos pró xima a N-S con buzamientos subverticales.

La esquistosidad de primera fase afecta por igual a todas las litologías con una dirección predominante próxima a N-S y buzamientos subverticales al NE. La estratificación se observa con dificultad debido al paso gradual entre las distintas litologías.

Se observan algunas diaclasas escasas en dirección aproximada E-W con fuerte fuzamiento al N.

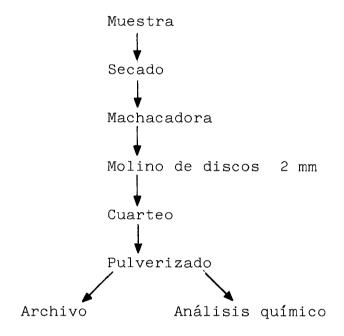
2.1.1.4. Calicata GC-4

Realizada para descubrir el origen de las - anomalías existentes entre los perfiles V y Z, muestras -- 6 y 7, tiene una longitud de 400 m en dirección entre N 66° y 69° E y una profundidad máxima de 1,90 m.

En esta calicata se han cortado materiales pelíticos y areniscosos en una proporción similar.

En total se han cortado 14 filones de cuarzo con potencias entre 2-3 y 15 cm, existiendo dos lentejones nos. 13 y 14, de 50 cm y entre 20 cm y 1 m de potencia respectivamente. La dirección de estos filones, aunque se observa con dificultad es próxima a N-S, con buzamientos variables y a veces plegados.

La esquistosidad principal afecta por igual a todas las litologías siendo la dirección predominante -- próxima al N-S con buzamientos subverticales. La estratificación es difícilmente observable.


A lo largo de la calicata se observan diversas diaclasas con una dirección predominante N 30º a 50ºE - con buzamientos subverticales.

2.1.2. Muestras

Sobre la pared N de cada una de las calicatas se tomaron mediante roza contínua un total de 471 muestras de 3 m de longitud, 20 cm de altura y 3 cm de fondo cada -- una de ellas.

Cada muestra, de unos 30 km de peso, una vez envasada y rotulada con las siglas GC-C 1, 2, 3 ó 4 y su - número de orden fué enviada al laboratorio que el IGME posee en Aldea Moret (Cáceres) para su preparación.

De estas muestras, 200 se han sometido al - siguiente proceso para su posterior análisis químico

2.1.2.1. Calicata GC-1

En esta calicata se han analizado un total de 59 muestras, con los siguientes resultados:

	ppm Au		ppm Au
GC-1C- 29	0,005	GC-1C- 72	0,005
30	11	73	0,005
31	н	74	н
32	11	77	11
33	11	78	11
44	11	79	11
45	н	80	11
46	11	81	11
47	11	82	11
48	0,010	83	11
49	0,005	84	11
50	11	85	tt
51	11	86	H
52	11	87	II.
53	11	88	11
54	0,025	89	11
55	0,005	90	11
56	*1	91	H
57	11	92	Ħ
58	***	93	11
60	11	94	11
61	11.11	95	11
62	H	96	11
63	11	97	Ħ
64	н	98	11
65	***	99	Ħ
66	11	100	11
67	11		
68	11		
69	11		
70	II		
71	н		

Las 59 muestras analizadas en esta calicata dan valores por debajo de 0.005 ppm de Au, excepto tres de ellas, las muestras 48, 54 y 72 con 0,010; 0,025 y -- 0,005 ppm de Au respectivamente.

En la muestra 48 se observa un filón de — cuarzo de 1-2 cm de potencia, muy milonitizado, que no — llega a la superficie, encajado en areniscas. En la muestra 54 existe un pequeño nódulo de cuarzo de 15 x 5 cm in cluido tambien en el mismo tipo de roca. En la muestra 72 no se observa ningún cuarzo, solamente areniscas.

2.1.2.2. Calicata GC-2

En esta calicata se han analizado un total de 46 muestras con los siguientes resultados

	ppm Au		ppm Au
GC-2C- 1	0,005	GC-2C- 6	0,005
15	0,005	(S2 "
16	. !!	ϵ	64 "
17	11	ϵ	S5 "
18	11	7	72 "
19	11	7	73 "
20	11	5	74 "
21	11	•	75 "
50	11	•	76 ''
51	11	,	77 "
52	11	•	78 "
53	11	,	79 ''
54	н	{	30 "
55	11	{	31 "
56	11	8	32 "
57	Ħ	8	33 "
5,8	11	8	34 "
60	11	{	35 "

ppm Au		<u>ppm Au</u>	
0,005	GC-2C- 91	0,005	GC-2C- 86
11	92	tt	87
11	93	11	88
11	94	ti	89
		11	90

Todas las muestras analizadas en esta calic \underline{a} ta dan valores por debajo de 0,005 ppm de Au, excepto una - de ellas, la muestra 1 con 0,005 ppm de au.

En esta muestra no se observa ningún cuarzo, solamente pizarras.

2.1.2.3. Calicata GC-3

En esta calicata se han analizado un total - de 47 muestras con los siguientes resultados:

		_
	ppm Au	ppm Au
GC-3C- 24	0,005	GC-3C- 51 0,005
30	11	52 "
37	11	53 "
38	11	55 0,010
39	11	59 0,005
40	11	60 "
41	11	72 "
42	11	77 "
43	11	79 0,005
44	11	92 "
45	н	93 0,005
46	11	94 0,015
47	11	95 0,005
48	11	96 "
49	11	97 0,005
50	11	98 0,005

	ppm Au		ppm Au
GC-3C-99	0,010	GC-3C-110	0,005
103	0,015	111	0,005
104	0,005	112	0,005
105	11	113	11
106	11	114	0,010
107	H	115	0,005
108	11	116	11
109	0,015		

De las 47 muestras analizadas en esta calicata únicamente 9 de ellas dan valores de 0,005 ppm de Au o superiores: las muestras 92, 97 t 111, 0,005 ppm; las muestras 55, 99 y 114, 0,010 ppm y las muestras 94, 103 y 109, 0,015 ppm.

Sólo aparece cuarzo en las muestras 109 y 111, en la primera de ellas aparece un filón de 7 cm de potencia milonitizado y en la segunda un filón de 5-6 cm de potencia tambien milonitizado que no llega a la superficie. En ambos casos la roca encajante son pizarras y areniscas. En el resto de las muestras solo se observan pizarras o areniscas.

2.1.2.4. Calicata GC-4

En esta calicata se han analizado un total de 48 muestras con los siguientes resultados:

	ppm Au		ppm Au
CG-4C-35	0,005	CG-4C-83	0,005
45	II	84	**
46	11	85	**
47	11	86	11
48	11	87	11
49	П	88	0,010
50	11	89	0,005
51	0,005	90	ff
42	0,005	91	н
53	11	92	11
54	H	93	11
55	"	94	11
56	H	95	11
57	Ħ	102	***
58	***	107	11
59	11	108	**
60	H	109	11
61	11	110	11
62	H	111	**
63	11	112	**
64	H	113	II.
80	11	116	11
81	11	130	H
82	11	132	11

Todas las muestras analizadas en esta calicata excepto dos, las 51 y 88, dan valores por debajo de 0,005 ppm de Au. La 51, 0,005 ppm y la 88, 0,010 ppm.

En la muestra 51 se observa un filón de cuarzo subhorizontal de 3-5 cm de potencia y 1,5 m de longitud muy milonitizado con óxidos de hierro, encajado en pizarras y - areniscas mientras que en la muestra 88 no se observa ningún cuarzo, solo pizarras y areniscas.

2.2. AREA RESERVA "LA CODOSERA"

2.2.1. <u>Investigación del eluvión coluvión. Area Cerro de los</u> Algarbes

Los altos contenidos en oro detectados por - la geoquímica táctica realizada en los suelos del área de - Los Algarbes durante el proyecto anterior, valores que como se puede apreciar en el plano nº superan las 300 ppb en una amplia zona y en general superiores a las 114 ppb, uni- do al amplio desarrollo de los suelos en la vertical, hecho observado en determinados sectores durante la realización de calicatas mecánicas, aconsejaron la programación de una campaña piloto de toma de muestras, de gran volumen, de suelos, en un sector de esta zona anómala a fin de tratar de precisar la potencialidad real de este tipo de depósito.

De esta manera se programó la ejecución de -veinticinco pocillos en el sector de los Algarbes en donde se concentran la mayor parte de las antiguas explotaciones auríferas (romanas y posteriores).

Para la ubicación de los pocillos se utilizó la red de estaquillado efectuada para la campaña de geoquímica táctica realizada en el proyecto "Esploración en el área de La Codosera (Au, Sn, W, Sb) 1987" disponiendo y realizando las labores en los perfiles Q-17, R, S, T, U, V, X, de -tal manera que cubrieran la mayor parte del sector de máxima anomalía pero tambien tomando muestras en puntos en donde el contenido en oro dado por los suelos en la campaña anterior, era inferior al primer umbral de anomalía (114 ppb) (plano - n°).

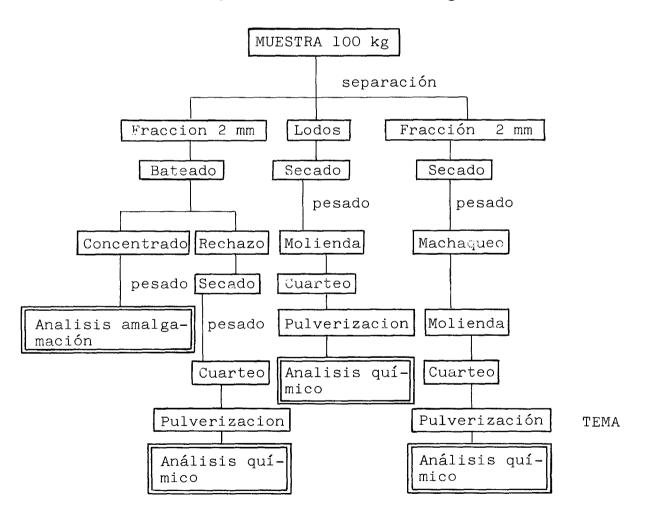
Para la realización de estas labores se utilizó una máquina retroexcavadora. El procedimiento seguido en la toma de muestras fue el siguiente: la máquina profundizaba hasta encontrar la roca base, disponiendo el material sacado en uno o dos montones, según su volumen, que poste-riormente eran removidos y mezclados por la misma máquina o manualmente. De estos volúmenes, se tomaban 100 kg, madamente, de muestra y se realizaba la descripción del pozo. Las características principales de cada labor figuran en los cuadros adjuntos. A este respecto conviene resaltar cuatro tipos de pocillos, los realizados sobre una escombrera antigua en donde, en general, no se llegó a la roca base, descar tando para la toma de muestra el tramo mas superficial constituido esencialmente por cantos sueltos mas o menos voluminosos; los pocillos en los que la roca madre estaba consti-tuida por areniscas y cuarcitas más o menos compactas, en -donde el espesor del suelo es claramente definible; los poci llos en donde el suelo se apoya sobre lutitas, encontrandose estas siempre muy descompuestas, formando en general una masa arcillosa, alterada, muy parecida al material constituyen te del suelo por lo que dificultaba en gran manera la defini ción del espesor del suelo real; en este caso parte del mate rial lutítico entraba a formar parte de la muestra; y por úl timo los pocillos realizados en aluvial en donde tampoco se llegó claramente a la roca madre, a veces en profundidades superiores a los tres metros.

En general, en el sector explotado, la potencia del suelo oscila entre 0,30 y 2 m teniendo en cuenta lo comentado anteriormente respecto a que en algunos casos todo el espesor estimado no sea solo de suelo, si no tambien roca madre lutítica muy alterada. En algunos pocillos el espesor es mayor, incluso que 3 m, son los realizados en aluvial.

En general las características del suelo son muy uniformes, si exceptuamos los que coinciden en escombre ras o aluvial, está constituido por un material arcillo-limoso, a veces arenoso, con apenas cantos mayores de la 2 cm y de color amarillo-rojizo (ferruginizado).

La roca que lo soporta es en general lutítica, muy descompuesta, formando casi siempre una masa arcillosa - de color blanco o amarillo-rojizo.

De esta manera y según figura en los cuadros adjuntos, el espesor medio de material que constituye el -suelo se puede estimar en l m, en el perfil -O- ligeramente
más alto es el espesor en el perfil -P- situado a inferior cota, en general, que el anterior estimandose en 1,10 m, sin
tener en cuenta la potencia dada en los pocillos P-2 y P-22
realizados en aluvial y escombrera respectivamente. En el -perfil -Q- la potencia de suelo disminuye en término medio,
si bien aquí es muy irregular, variando entre 0,30 y 3 m -(terraza aluvial), regularidad que sí se presenta en los per
files anteriores.


La potencia, en el perfil R, es bastante regular y ligeramente inferior a l m, incrementandose en el perfil S, teniendo en cuenta los 3 m estimados en el pocillo -- S-12. Hasta aquí la topografía va descendiendo, desde el perfil -R-, hasta el regato del Monte, en cuyo aluvial se dan - los mayores espesores. En conjunto se puede estimar una potencia media de suelo de l m.

A partir del perfil U, con un espesor medio - de 1 m de suelo, la topografía vuelve a subir hasta el per-- fil , el más Noroccidental de los realizados, disminuyendo - el espesor del suelo hasta unos 0,80 m por término medio.

En conjunto, de suelo real, se puede estimar un espesor medio entre 0,80 y l m si bien esta potencia es bastante mayor considerando como suelo, y dependiendo de los resultados analíticos, el tramo de lutitas fuertemente alteradas y que se extiende por la práctica totalidad del sector en donde se han efectuado las labores, en este caso la potencia del material de interés es casi el doble del considerado e incluso mayor en algunos sectores.

2.2.1.1. Preparación de muestras. Metodología

Las muestras tomadas sobre cada uno de los pocillos realizados (100 kg) fueron enviadas a los Laboratorios de Aldea Moret, siendo sometidos al siguiente tratamiento:

Las cuatro fracciones fueron enviadas a los Laboratorios de Watson Gray para su análisis por absorción atómica y a Rio. Tinto Minera, para su análisis mediante - amalgamación, haciendo sobre alguna de ellas ensayos de -- concentración al fuego (Fire assaying).

2.2.1.2. Resultado de análisis. Ley media por muestra

El cuadro adjunto representa los resultados de las muestras tomadas en los pocillos realizados en el -- Cerro de los Algarbes. En él se indica el peso de las di-- ferentes fracciones y los resultados analíticos de cada una de ellas, a partir de los cuales se ha definido la ley media por muestra, sin que se hayan tenido en cuenta los resultados relativos a la fracción de lodos que se recogian al separar la fracción superior a 2 mm, de la inferior.

El resultado obtenido se aplica a la muestra seca, sin tener en cuenta la humedad, ya que esta no es intrínseca de la misma, por haberse recogido en época lluviosa.

Conviene tener en cuenta que la fracción deno minada 3.1 corresponde al oro libre existente en cada mues-tra, mientras que el resto está contenido en la fracción rocosa que conforma cada una, por lo que su recuperación habría de hacerse con metodologías diferentes, que implicarían diferencias en los costes de extracción.

La situación sobre el plano de los resultados de los análisis químicos sobre los materiales que no contienen oro libre muestran la existencia de 14 muestras con valores superiores a 100 mg/t, lo que supone un 41,17% del total tomado. 8 muestras (23,52%) dan 0 y el resto (35,30) en tre ambos.

			ř	10S					107					у.е. 101					84 96					KS II2						3.1
200 °0	0+1,0		11,3947 64,1 74	kg 108	990'0		070,0 010,0	25 0'9896 26 26	κ ε 103	812,0	¢66*0	0,200	8 1470,1 31 54		S00.0	051,0	500*0 500*0	21,583 82 82 85	jk 86											1.5 2.5 3.2
		200,0	1,9206 1,9206 13	934 105					KE TOT	991,0	7 2. 5	015.0 070.0	62 62 53 75	у € 105	£10.5	05E+0	200,0 210,0	\$1 0,5177 23 64	हेत्र 201											1 3.5 3.2 2+5
				kg IOS	9#1,0	091,1	09T 0	31 82 71	29ъј .7ТТ.	,				ке 10е	E SO *0	088.0	620.0 210,0		В 334 66											1 3.5 3.5 6+4
751, 0	084.0	041.0 050.0	22 1,3696 23 23		750,0	0,250	210,0 250,0	16 0,6406 16		577.5	12,5	581'C	61 57 6691°1 41		8 9 5*8		004,0 200,5	201,1 29 35	24 201									·		3.5
				105	550'0	090'0	981.0 010.0	12 43 1'3513 54		067,0	72 , 5	005°0	25 1,194 32 23		3° I 46	0,640	0£0,0	2,3052 34 17	934 334											2.8 2.8 1.8
010'0		0,020			790,0	059*0	690°0	75 0,7559 82 82		650,0	088,0	250,0 010,0	23 2,6436 23 35		S70.0	91,0	083,0 290,0	12 7752,1 52 52 33	, 102											1 3.5 3.5
SLL.0	osz.o	090'T			671,0	07 5. S	301,0 281,0	25 0,9772 29 SS	j≮€ 100	9£1,0	200,1	050'0 050'0	18 32 35 35 35	ķ С 110					774 774	0,224	1**1	0.230 0.130	92 92 92 1		910'0	se.0	050,0 3100,0	21 81 82 16	kg 81	3°5 3°5 1°6
850,0	085°t	500,0	23 0,939 23 1E		0.010	0EE.0	200,0 200,0	36 1,565,6 42		07 E, 0	06B,£	90£,0	100°57 28 37 37		990*0		0,030 0,140	21 1151,1 26 55	κ¢ 103	-					209,0	21,5	047.0 078.0	14 63 74	Kg T20	1.8 3.2 4.5
۲00,0	081,0	010'0 900'0			010,0	069'0	\$00*0	52 35 36*0 72		Þ10,0	096,0	200,0 200,0	35 0*8535 16	96 34	S10*0		010,0 010,6	81 S159,0 OE 29	3:4 100			·	-							3.2
7/27 rex	and the	1/38 1/38	.9.9	.T.9	1728 Kən	=147f	2 Au 2/19		.1.9	Ley gr/t	2369 g		.a.a	.T.9)/12 (4)	3(4)	12 8r/t		T. 4	Ley Ze/t	鰻	T Au	.9.9	.T.9	Ley L	pići gen	% Au 2.7t	.9.9	.1.q	ARTRAU

En el cuadro adjunto se presentan los pesos y contenidos de las diferentes fracciones de muestra que se han obtenido. Las fracciones analizadas han sido:

- Concentrado fracción menor de 2 mm
- Rechazo de bateado de la fracción menor de 2 mm
- Fracción mayor de 2 mm

La primera de ellas se ha analizado por amalgamación y posterior absorción atómica y las dos restantes mediante absorción atómica.

2.2.1.3. Valoración del contenido en oro

A la vista de los resultados obtenidos, se ha procedido a la situación en el plano correspondiente de los contenidos medios obtenidos en cada muestra y su potencia, - para valorar el contenido aurífero del área.

Teniendo en cuenta que las muestras con valores de cierta consideración (superiores a 100 mg/t) son sol \underline{a} mente 14, la superficie que se puede considerar como de influencia para las mismas es de 98.000 m 2 .

Nº MUESTRA	POTENCIA m	CONTENIDO MEDIO Au gr/t
P-2	3,75	0,605
Q-7	3	0,224
S-12	3	0,146
T-12	1,8	0,568
X-17	1,7	0,218
V-17	1,5	0,166
T-17	1	0,442
S-17	1,9	0,730

Nº MUESTRA	POTENCIA m	CONTENIDO MEDIO Au gr/t
Q-17	1,9	0,136
P-17	1,9	0,370
Q-22	2	0,179
0-22	1,8	0,146
Q-27	1	0,775
T-27	1,1	0,127

La potencia media ponderada es de 1,93 m

- La ley media ponderada en Au es: 0,341 gr/t

- Volumen total eluvión beneficiable: 189140 m^3

- Densidad media estimada: 2,2 gr/cm³

- Tonelaje total: 416.108 t

- Contenido extraible: 141.892 kilos

Hay que tener en cuenta que la mayor parte - del oro existente en las muestras de 100 kilos se encuentra en la fracción rocosa, siendo valores insignificantes los - correspondientes al oro libre.

Por ello, a la hora de plantearse la posibilidad de beneficio del metal precioso hay que considerar que su tratamiento requerirá una planta de machaqueo y de separación de oro bien mediante cianuración o por el contrario llevar a cabo un tipo de extracción en escombrera como HEAP LEACHING, lo que implicaría altos costos que hacen poner en duda la rentabilidad del depósito.

2.2.1.4. El oro libre

Se ha calculado a partir del contenido me-diante amalgamación referido al peso total de la muestra,
incluidos los lodos que suponen el rechazo de la separación
de la fracción de menos de 2 mm de la mayor.

NºMUESTRA	PESO TOTAL	PESO MUESTRA concentrado	PESO REGULO mgs	ORO LIBRE
P-2	126.5883 kg	2.588'3 gr	5 , 50	0,043
Q-2	65.1363	1.136'3	0,40	0,006
Q-7	68.8694	1.869'4	2,67	0,038
0-12	77.9412	941'2	0,30	0,004
P-12	88.1311	1.131'1	0,48	0,006
U-12	76.2787	2.278'7	1,32	0,017
R-12	79.2677	1.267'7	0,20	0,002
S-12	71.3052	2.305'2	1,48	0,020
T-12	69.105	1.105'0	2,42	0,035
V-12	71.2787	517!7	0,18	0,002
X-12	70.5823	1.582'3	0,20	0,002
0-17	79.8235	823'5	0,30	0,003
P-17	76.0027	1.002'7	1,90	0,025
Q-17	86.6018	1.601'8	1,60	0,019
R-17	81.6436	643'6	0,55	0,007
S-17	81.194	1.194'0	2,71	0,033
T-17	82.899	1.189'0	2,70	0,033
V-17	89.0218	1.021'8	2,52	0,028
X-17	79.0741	1.074'1	1,05	0,013
0-22	85.94	940'2	0,65	0,007
P-22	99.5658	1.565'8	0,52	0,005
Q-22	76.9772	977'2	2,41	0,031
U-22	77.5539	1.553'9	1,81	0,023
R-22	74.7559	755'9	0,49	0,006
S-22	83.7213	1.721'3	0,10	0,001
T-22	57.6406	640'6	0,16	0,003

Nº MUESTRA	PESO TOTAL	PESO MUESTRA concentrado	PESO REGULO mgs	ORO LIBRE
X-22	81.8896	889'6	1,98	0,024
0-27	75.9925	992'5	0,18	0,002
P-27	97.939	939'0	1,48	0,015
Q-27	90.6433	643'3	0,16	0,001
R-27	81.82	820'0	0,00	0
T-27	77.3896	1.389'6	0,67	0,008
V-27	72.9208	920'8	0,00	0
X-27	88.3947	1.394,7	0,20	0,002

La observación de los resultados obtenidos nos muestra que no existe prácticamente oro libre en las muestras recogidas, habiendo de admitirse que todo él está contenido en la masa rocosa que conforma cada muestra.

A N E X O - 1

DESCRIPCION POCILLOS
CERRO DE LOS ALGARBES

Nº POCILLO	POTENCIA SUELO	CARACTERISTICAS SUELO	CARACTERISTICAS ROCA	PROFUNDIDAD TOTAL DEL POCILLO	CONTENIDO EN Au	OBSERVACIONES
0-12	1,30 m	Ferruginoso rojizo. Ar- cillo-limoso. Apenas cantos.	Lutitas amarillo-roj <u>i</u> zas. La alteracion f <u>e</u> rruginosa en relacion con fisuras	2 m		100 kg de muestra
0-17	1 m	Arcillo-limoso. Apenas cantos ferruginoso ro- jizo	Lutitas rojas (ferrug <u>i</u> nizadas) muy alteradas y descompuestas	2 m		98 kg de muestra
0–22	2,50 m	Escombrera. Cantos de - pizarras, cuarcitas y - cuarzo. Arenas y limos pardos		2,50 m		100 kg de muestra
0–27	l m	Arcilla-limos-arenas roj jo-amarillentas	Areniscas y lutitas roj jas ferruginizadas, descompuestas	2 m		106 kg de muestra
P-2	3,75 m	Aluvial. Arenas, limos amarillentos con abun- dantes cantos de cuar- zo. Los 50 cm finales arcillas rojizas		3,75 m		150 kg de muestra
P-7	1 m	Arcilla-limos-Arenas - ferruginosas, con can- tos lutíticos y de cuarzo	Lutita amarillo-rojiza muy alterada y descom- puesta	1,80 m		112 kg de muestra
P-12	1,20 m	Arcillo-limoso ferrug <u>i</u> noso	Cantos de cuarcitas muy alterados, filoncillos de cuarzo, todo en arci- llas rojas.			103 kg de muestra

Nº POCILLO	POTENCIA SUELO	CARACTERISTICAS SUELO	CARACTERISTICAS ROCA	PROFUNDIDAD TOTAL DEL POCILLO	CONTENIDO EN Au	OBSERVACIONES
P-17	1,10 m	Escombrera	Arena-limo-arcilla.Fe- rruginoso. Filon de cuarzo con óxidos de - Fe	1,90 m		95 kg de muestra
P-22	3,50 m	Escombrera. Hasta 1,50 m cantos gruesos (piza rras-cuarcitas).Resto cantos de cuarzo, arenas y limos pardo roji zos (Esc.Primaria?)		3,5 m		101 kg de muestra
P-27	1,20 m	Arenas-limos-arcillas amarillentas y rojos (ferruginosos)	Lutitas muy alteradas, prácticamente descom puestas a arcillas	2 m		110 kg de muestra
Q-2	30 cm	Arenas-limos amarille <u>n</u> tas	Lutitas grises altera- das a blanco-amarillen tas	1,20 m		95 kg de muestra
Q-7	3 cm	l m de arenas-limos-ar cillas con cantos de - cuarzo, resto, limos, arcillas amarillentas ferruginosas		3 m		104 kg de muestra
Q-12	30 cm	Arcilla-limos amarillo rojizos	Lutitas amarillo-roj <u>i</u> zas ferruginosas	1 m		114 kg de muestra
Q-17	90 cm	Arenas-arcillas con cantos de lutitas ama- rillentas.	Lutitas arenosas rojas	1,90 m		110 kg de muestra
Q-22	1,50 m	l m de arcillas-limos rojos 0,50 m de arena- arcilla-limos muy fe rruginosas		2 m		100 kg de muestra

NºPOCILLO	POTENCIA SUELO	CARACTERISTICAS . SUELO	CARACTERISTICAS ROCA	PROFUNDIDAD TOTAL DEL POCILLO	CONTENIDO EN au	OBSERVACIONES
Q-27	50 cm		Lutitas verdes con óxidos de Fe en nichos y segun - Sn venas y nichos de cua <u>r</u> zo blanco	1 m		110 kg de muestra
R-12	l m		Lutitas amarillo-rojizas muy ferruginosas y alter <u>a</u> das (descompuestas)	1,90 m		102 kg de muestra
R-17	60 cm	Arenas-limos-arcillas amarillo-rojizas		1,40 m		106 kg de muestra
R-22	90 cm		Lutitas blanco-grisáceas descompuestas	1,60 m		100 kg de muestra
R-27	70 cm	Limos-arcillas amari- llentas	Lutitas blanco amarillen— tas descompuestas	1,70 m		105 kg de muestra
S-12	3 m	Arena-limo-arcilla parda oscura (50 cm) y amarillo-rojiza ferruginosa.	1	3 m		97 kg de muestra
S-17	30 cm	Arenas-limos pardos	Lutitas arcillosas muy descompuestas, verdes y rorojas por ferruginizacion	1,90 m		98 kg de muestra
S-22	1 m	Limos-arcillas rojizas	Arenas y lutitas blancas muy alteradas	1,50 m		104 kg de muestra
S-27	1 m	Arena-limo-arcillas amarillentas	- Lutitas blanco-amarillen- tas descompuestas	2 m		102 kg de muestra

Nº POCILLO	POTENCIA SUELO	CARACTERISTICAS SUELO	CARACTERISTICAS ROCA	PROFUNDIDAD TOTAL DEL POCILLO	CONTENIDO EN Au	OBSERVACIONES
T-12	1,80 m	Arenas-arcillas-limos pardo-amarillentos. Lutitas amarillentas ferruginosas muy des- compuestas		1,80 m		100 kg de muestra
T-17	50 cm	Arenas-limos amarille <u>n</u> to-oscuros	Lutitas arenosas-arenis- cas blanco-amarillentas rojizas	1 m		100 kg de muestra
T-22	60 cm	Arcillas-limos blanco amarillentas	Lutitas blanco amarille <u>n</u> tas alteradas	1,10 m		100 kg de muestra
T-27	60 cm	Arena-limo-arcilla-am <u>a</u> rillentas	Lutitas y lutitas areno- sas amarillentas. Descom puestas	1,10 m		101 kg de muestra
U-12	1,60 m	Arena-limo-arcilla par do rojiza. Escasos can tos de areniscas y cuarcitas ferruginosas		1,60 m		99 kg de muestra
U-17	90 cm	Arcilla-limos rojo ama rillentos	Lutita gris-azulada	1,60 m		106 kg de muestra
U-22	1 m	Arcilla-limo orgánico, pardo negro	Arcillas gris-blanqueci- nas	1,80 m		114 kg de muestra
U-27	1 m	Arcillas pardo-amari- llentas	Lutitas blancas	1,50 m		102 kg de muestr
V-12	70 cm	Arena-limo pardo roj <u>i</u> zo	Lutitas rojas, ferruginosas muy descompuestas	1,30 m		102 kg de muestr

N₀bocirro	POTENCIA SUELO	CARACTERISTICAS SUELO	CARACTERISTICAS ROCA	PROFUNDIDAD TOTAL DEL POCILLO	CONTENIDO EN Au	OBSERVACIONES
V-17	80 cm	Arena-limo-arcilla rojo amarillenta con cantos cuarcíticos de 5 a 10 cm	Lutitas gris—azuladas	1,50 m		102 kg de muestra
V-22	80 cm	Arcillas-limos-arenas - rojizas (ferruginizados)	Lutitas gris-blancuzcas filón de cuarzo blanco con alteración ferrugi- nosa.	2 m		101 kg de muestra
V-27	50 cm	Limos-arcillas pardo am <u>a</u> rillentas	Lutitas blanco-verdosas amarillentas. Muy descom compuestas	1,50 m		107 kg de muestra
X-12	60 cm	Arenas y limos pardo ro- jizos. Bloques de arenis cas rojas ferruginosas	Areniscas rojas ferrugi- nosas	l m		98 kg de muestra
X-17	1,50 m	30 cm de suelo arcilloso orgánico pardo-negro Resto relleno con cantos de cuarcita de hasta 50 cm.	verdosa	1,70 m		101 kg de muestra
X-22	90 cm	Arena limo y arcillas - blanca-amarillentas	Lutitas blanco-amarillen- tas	1,30 m		109 kg de muestra
X-27	60 cm	Arena limo y arcilla	Lutitas y lutitas arenosas (silíceas) blancas. Muy - descompuestas	1,10 m		108 kg de muestra
Y-7	30 cm	Arenas—arcillas rojas	Roca descompuesta (cuarcita?) con filon de cuarzo gossinificado (brecha?)	1 m		
Y-12	60 cm	Arcillas limos rojos	Lutita arcillosa roja	1,20 m		
Y-17	50 cm	Arcillas-limos amarillos rojizos con cantos cuar- cíticos de 10 a 20 cm		l m		

Nº POCILLO	POTENCIA SUELO	CARACTERISTICAS SUELO	CARACTERISTICAS ROCA	PROFUNDIDAD TOTAL DEL POCILLO	CONTENIDO EN Au	OBSERVACIONES
Y-22	1,30 m	Arcillas-limos amarillos rojos con cantos cuarcí- ticos y de cuarzo	•	1,50 m		
Y-27	1,50 m	Arcillas amarillo-roji zas con grandes bloques de cuarcitas y areniscas rojas		1,50 m		

$A \ N \ E \ X \ O \ - \ 2$

RESULTADOS ANALISIS
ORO CONTENIDO EN LAS ROCAS
CERRO DE LOS ALGARBES

2.0 WATSON GRAY Española de Control, S. A. CERTIFICADO DE ANALISIS Miembros del Grupo Internacional Griffith Orense, 27, Esc. A, 5.° D - 28020 Madrid Laboratorio Tel. 658 02 01 - Paracuellos de Jarama LOTE N.º TOTAL MUESTRAS: RECIBIDO: 6/38 68 3-2-88 CLIENTE: COMPAÑIA GENERAL DE SONDEOS, S.A. ELEMENTO Au UDAD. DE MEDIDA ppm MUESTRA Batea 3 0-12 0,010 0,015 0 - 170 - 220,005 0-270,010 P - 20,740 P-12 0,030 11 P-17 0,400 P - 22!! 0,005 P - 27005 و0-2-2 0,030 ୁ-7 0,230 Q-17 0,050 ू-22 0,100 0 - 270,345 11 R-120,080 R-17 0,035 R-22 0,050 0,020 R-27 11 S-12 0,175 0,550 S-17 S - 220,010 T-120,400 17 T-170,415 T-2211 0,015 **T-2**7 0,030 11 0,045 U-12 U-22 0,160 V - 120,005 FECHA

NOTAS

El simbolo(-) significa menor que el

10-2-88

limite de detección.

AR/JL

CERTIFICADO N.º 5/88

ANALIZADO POR

DIRECTOR DE LABORATORIO

Aloche

HOJA 1 DE

ELEMENTO				
	Au			
UDAD. DE MEDIDA	ppm			
MUESTRA				
Batea 3 V-17	0,210			
" V-27	-0,005			
" X-12	-0,005			
" X-17	0,200			·
" X-22	0,070			
" X-27	-0,005			
Batea 4y5 0-12	0,010			
" 0 -1 7	0,005			
" O-22	-0,005			
n 0-27	-0,005			
" P-2	0,370			
" P-12	0,140			
" P-17	0,305			
" P-22	-0,005			
" P-27	-0,005			
" 0-2	-0,005			
" Q-7	0,130			
" 2-17	0,190			
" Q-22	0,185			
" Q-27	1,065			
" R-12	0,065			
" R-17	0,010			
" R-22	0,065			
" R-27	0,010			
" S-12				
	0,030			
" S-17 " S-22	0,900			
" T-12	0,005			
" T-17	0,185			
" T-22	0;035			
" T-27	0,170			
" U-12	0,015			
" U-22	0,035			
NOTAS			CERTIFICADO N.º	5/88
			HOJA 2 [DE 3
			IIUJA 2 L	, c 3

1.

ELEMENTO Au DUDAD. DE MEDIDA PAPA DA CARA 445 V-12 0,015 0 0,070 0 0,005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· -				<u> </u>				
MUESTRA Sates 4y5 Y-12 O, 015	FIFMENTO	A							
MUESTRA Datea 4y5 V-12									
NOTAS Nate 4475 V-12		ppm							
# V-17						1			,
## V-27 -0,005 ## X-12 -0,005 ## X-17	Batea 4y5 V-12		-						
n X-12 -0,005	<u> </u>	0,070					· · · · · · · · · · · · · · · · · · ·		
" X-17	n V-27	-0,005							
NOTAS 0,010 0		-0,005							
n x-27 -0,005 Adapted NOTAS CERTIFICADO N.º 5/88									
NOTAS CERTIFICADO N.º 5/88									
NOTAS CERTIFICADO N.º 5/88	" X-27	-0,005					.		<u></u>
NOTAS CERTIFICADO N.º 5/88	AND NO. OR OWN AND NOT HER AND			_					
NOTAS CERTIFICADO N.º 5/88	A -)								
NOTAS CERTIFICADO N.º 5/88	Jack of the state								~~~~
NOTAS CERTIFICADO N.º 5/88	At		-				,		
NOTAS CERTIFICADO N.º 5/88									-
NOTAS CERTIFICADO N.º 5/88									
NOTAS CERTIFICADO N.º 5/88								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	v - 111-51-
NOTAS CERTIFICADO N.º 5/88									
			·						
									<u> </u>
HOLA 3 DE 3	NOTAS					CERTIFICAL	DO N.º	788	
		<u></u>			·	ALOH			

A N E X O - 3

RESULTADOS DE ANALISIS
ORO LIBRE, CERRO ALGARBES

0937.69 40409 046 = 75516 RTM E

HUELVA 23.2.88 TLX.NR.88

ATEMCION D. VICENTE CRESPO

P-2 2.588'3 GRS. 5'50 0-2 1.136'3 0'40 0-7 1.369'4 2'67 0-12 941'2 0'30 P-12 1.131'1 0'48	
0-2 1.136'3 0'40 0-7 1.369'4 2'67 0-12 941'2 0'30 P-12 1.131'1 0'48	
0-7 1.369'4 2'67 0-12 941'2 0'30 P-12 1.131'1 0'48	
0-12 941'2 0'30 P-12 1.131'1 0'48	
P-12 1.131'1 N'48	
· · · · · · · · · · · · · · · · · · ·	
U-12 2.278'7 1'32	
R-12 1.267'7 0.20	
s-12 2.3n5'2 1'48	
I-18 1.105'0 2'42	
V-12 517'7 0'18	
x-12 1.582'3 0'20	
0-17 823'5 0'30	
P-17 1.002'7 1'90	
e-17 1.601'S 1'60	
R-17 643'6 0'55	
S-17 1.194'0 2'71	
$1.189.9$ $\frac{1}{2}.70$	
V-17 1.021'8 2'52	
X-17 1.074'1 1'05	
0-22 940.2 0.65	
P-22 1.565'8 0'52	
0-22 977'2 2'41	
U-22 1.553'9 1'81	
R-22 75519 0149	
S-22 1.721'3 0'10	
T-22 640'6 0'16	
X-25 880.4 1.88	
0-27 992'5 0'18	
P-27 03910 1148	
0-27 643'3 0'16	
R-27 820'0 0'00	
T-27 1.389'6 0'67	
V-27 920'8 0'00	
X-27 1.394'7 0'20	

SALUDOS / LAMELA

40400 065 65 40400 065 6 **75516 RTM E**

A N E X O - 4

RESULTADOS DE ANALISIS
CALICATAS SO. GUIJO DE CORIA

WAISUN GRA	XX Española de Contro Grupo Internacional G	de Control, S. A. CERTIFICADO DE ANALIS					
Orense, 27, Es Laboratorio Tel. 6	c. A, 5.° D - 28020 M 558 02 01 - Paracuellos de J	adrid LOTE N.º		TOTAL MUESTRAS:	RECIBIDO: 9-2-83		
					9-4-00		
CLIENTE: COMPA	ÑIA GENERAL DE S	ONDEOS,S.A.					
ELEMENTO	Au						
UDAD. DE MEDIDA				-			
	ppm		Ĺ				
MUESTRA GC-1C 29			i				
	-0,005						
	-0,005						
" 31	-0,005	-					
" 32	-0,005	-		 			
" 44	-0,005						
11 47	-0,005						
" 49	-0,005						
" 50	_0,005						
" 51	-0,005			<u> </u>			
52	-0.005						
" 53	-0,005						
" 54	0,025						
" 56	-0,005						
n 57	-0,005						
" 58	-0,005						
" 61	-0,005						
" 62	-0,005		 				
" 63							
" 66	-0,005		 				
" 67	_0,005						
	-0,005		-				
11 68	_0,005						
" 69		 					
" 70	-0,005		 				
" m 73	-0,005						
74	_0,005		 				
" 77	-0,005			-			
78		-	-	-			
79	-0,003		L	EECUA			
NOTAS El_simbolo	(-), significa	menor que el	limi-		-2-38		
te de det	cección.			CERTIFICADO N.º	6/88		
ANALIZADO POR/	R/JL DIRECTOR DE LABORATORIO			HOJA 1 DE 4			

ELEMENTO	Au		
UDAD. DE MEDIDA	ppm		
MUESTRA		 , 	· · · · · · · · · · · · · · · · · · ·
GC-1C 80	-0,005		
n 81	-0,005		
11 82	0,005		
" 83	-0,005		
n 35			
" 86	-0,005		
n 87	-0,005		
	-0,005		
n 92	-0,005		
" 93	-0,005		
	-0,005		
	-0,005		
" 99	-0,005		
GC-2C 15	-0,005		
17	-0,005		
n 18	-0,005		
" 20	-0,005		
" 21	-0,005		
" 50	-0,005		
" 51	-0,005		
" 52	-0,005		
n 54	÷0,005		
" 55	-0,005		
" 56	-0,005		
n 57	-0,005		
11 58	-0,005		
" 59	-0,005		
" 60	-0,005		
" 61	-0,005		
" 62	-0,005		
" 64	-0,005		
n 65	-0,005		
" 72	-0,005		
11 73	-0,005		
n 74	-0,005		
NOTAS		CERTIFICADO N.	6/88
		 HOJA 2	DE 4

ELEMENTO	Au			
UDAD. DE MEDIDA	ppm			
MUESTRA				
GC-2C 75	+0,005			
" 76	-0,005			
" 7\$	-0,005			
" 79	-0,005			
" 80	-0,005			
" 83	-0,005			
" 87	0,005			
" 90	-0,005			
" 92	-0,005			
" 93	-0,005			
GC-3C 41	-0,005			
" 51	-0,005			
" 96	-0,005			
" 97	0,005			
11 98	-0,005			
" 104	-0,005			
105	-0,005			
" 115	-0,005			
" 116	-0,005			
" 72	-0,005			
11 77	-0,005			
n 59	-0,005			
GC-4C 45	-0,005			
" 46	-0,005			
" 47	-0,005			
n 49	-0,005			
" 50	-0,005			
ıı 52	-0,005			
" 53	-0,005			
" 55	-0,005			
." 56	-0,005			
" 57	-0,005			
" 58	-0,005			
11 59	-0,005			
N O T A S	-		CERTIFICADO N.º	6/88
			HOJA 3 DI	4

		1		<u> </u>			
ELEMENTO	Au					4	
UDAD. DE MEDIDA	mqq	 					
MUESTRA				<u> </u>	L	L	
GC-4C 60	-0,005					<u> </u>	
11 62	-0,005		<u></u>				
ıı 63	-0,005		<u> </u>				
n 64	-0,005						
" 80	-0,005			-			
n 83	-0,005						
" 84	-0,005						
" 37	-0,005						
" 39	-0,005		<u> </u>				
	-0,005						
" 90	-0,005						
" 92	-0,005						
	-0,005						
	-0,005						
	-0,005						
	-0,005						
	-0,005						
	-0,005						
" 113 GC-1C 89	+0,005						
		 					
~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
							
							
//							
V		-					
HOTAS		 		CERTIFICA	NDO N.º	6/88	
		 		HOIA	4 DE		
	 	 		1		• •	

WATSON GRAY Española de Control, S. A. CERTIFICADO DE ANALISIS Miembros del Grupo Internacional Griffith Orense, 27, Esc. A, 5.° D - 28020 Madrid Laboratorio Tel. 658 02 01 - Paracuellos de Jarama LOTE N.º TOTAL MUESTRAS: RECIBIDO: 10/88 85 16-2-88 CLIENTE: COMPAÑIA GENERAL DE SONDEOS, S.A. ELEMENTO Au UDAD. DE MEDIDA ppm MUESTRA GC-1C 46 005 ** 43 0,010 11 55 -0,005 11 65 -0,005 -0,005 11 71 0,005 11 72 -0,005 11 84 -0,005 " 90 -0,005 11 94 98 11 -0,005 11 100 -0,005 GC-2C 1 0,005 11 16 -0,005 11 19 -0,005 53 0.015 11 -0,005 31 11 -0,005 11 91 -0,005 94 -0,005 GC-3C 44 -0,005 11 47 005,005 11 49 -0,005 Ħ 50 60 -0,005 -0,005 11 79 0,015 !! 103 0,005 11 107 005 و0-**11 108** GC-4C 35 005,004 FECHA 24-2-88 NOTAS El simbolo (-) significa menor que el CERTIFICADO N.º 11/88 limite de detección. DIRECTOR DE ANALIZADO POR HOJA

LABORATORIO

1 DE

ELEMENTO	Au			
UDAD. DE MEDIDA	ppm	·		
MUESTRA				
GC-4C 48	-0,005			
" 54	-0,005			
n 61	-0,005			
" 31	-0,005			
" 82	-0,005			
n 85	-0,005			
n 38	0,010			
" 94	-0,005			
n 108	-0,005			
" 116	-0,005			
" 130	-0,005			
" 132	-0,005			
GC-1C 33	-0,005			
11 45	-0,005			
" 60	-0,005			
" 64	-0,005			
	-0,005			
" 91 " 95	-0,005			
" 97	-0,005			-
GC-2C 77				
	-0,005			
	-0,005			
" 84	-0,005			
" 35	-0,005			
" 85	-0,005			
" 88	-0,005			
" 89	-0,005			
GC-3C 24	-0,005			
" 30 " 37	-0,005			
	-0,005			·
n 38	-0,005			
" 39	-0,005			+
" 40	-0,005			
" 42	-0,005 -0,005			
10 T A S	-0,000		CERTIFICADO N.º	11/00
				11/88
			HOJA ² DI	3

						_	
ELEMENTO	Au						
UDAD. DE MEDIDA	ppm	-					
MUESTRA				I			
GC-3C 45	-0,005						
n 46	-0,005						
n 48	-0,005						
" 52	-0,005						
" 53	-0,005				****		
" 55	0,010						
" 92	-0,005						
" 93	0,005			7 111			
11 94	0,015						
11 95	-0,005						
" 99	0,010						
" 1 06	-0,005						
" 109	0,015						
" 110	-0,005						
" 111	0,005						
11 112	-0,005						
" 113	-0,005						
" 114	0,010						
GC-4C 51	0,005						
" 36	-0,005						
" 95	-0,005						
" 109	-0,005			-			
" 111	-0,005						+ #
* 1							
						5 Page 444 444	
							If sing loss one was
				-			
	0/05						
N L	bull						
NOTAS	alas de la seconda de la secon			CERTIFICADO	N.º	11/88	
		· 	·	HOJA 3		3	

PLAN0S

				2			7							12			. 17						2				27					
ºMU	ESTRA	Р.Т.	P.P.	% Au gr/t	%Au libte	Ley gr/t	P.T.	P.P.	% Au gr/t	igr7€	Ley gr/t	P.T.	P.P.	% Au gr/t	žAu gr/£e	Ley gr/t	Р.Т.	Р.Р.	% Au gr/t	% Au libre gr/t	Ley gr/t	Р.Т.	P.P.	% Au gr/t	%Au libre er/t	Ley gr/t	P.T.	P.P.	%Au gr/t	% Au libre gr/t	Ley gr/t	
-	1 3.1 3.2 4+5											100 kg	18 0,9412 30 29	0,010 0,010	0,320	0,015	98 kg	19 0,8235 28 32	0,015 0,005	0,360	0,014	100 kg		0,005 0,005	0,690	0,010	106 kg	24 0,9925 21 30	0,010 0,005	0,180	0,007	
Р	1 3.1 3.2 4+5	150 kg	14 2,5883 63 47	0,740 0,370	2,12	0,605						103 kg	15 1,1311 35 33	0,030 0,140	0,420	0,086		10 1,0027 28 37	0,400 0,305	1,890	0,370			0,005 0,005	0,330	0,010	110 kg	23 0,939 23 31	0,005	1,580	0,028	
Q	1 3.1 3.2 4+5	81 kg	15 1,136,3 18 31	0,030 0,0015	0,35	0,018	104 kg	17 1,8694 25 26	0,230 0,130	1,47	0,224	114 kg					110 kg	18 1,6018 35 32	0,050 0,190	1,000	0,136	100 kg		0,100 0,185	2,470	0,179	110 kg	16 0,643,3 29 45	0,345 1,060	0,250	0,775	
R	1 3.1 3.2 4+5											102 kg	21 1,2677 24 33	0,080 0,065	0,160	0,072	106 kg	23 0,6436 23 35	0,035 0,010	0,850	0,029			0,059 0,065	0,650	0,067	105 kg		0,020 0,010		0,010	
s	1 3.1 3.2 4+5											97 kg	17 2,3052 34 18	0,175 0,030		0,146	98 kg	25 1,194 32 23	0,550 0,900	2,27	0,730			0,010 0,185	0,060	0,055	102 kg					
T	1 3.1 3.2 4+5											100 kg	13 1,105 29 26	0,400 0,005	2,190	0,568	100 kg	17 1,1899 45 19	0,415 0,185	2,27	0,442			0,015 0,035	0,250	0,027	101 kg	22 1,3896 31 23	0,080 0,170	0,480	0,127	
U	1 3.1 3.2 4+5											99 kg	17 2,2787 34 23	0,043 0,015		0,053	106 kg					114 kg	28	0,160 0,035	1,160	0,146	102 kg					
v	1 3.1 3.2 4+5											102 kg	12 0,5177 23 49	0,005 0,015	0,350	0,013	102 kg	23 1,0218 28 37	0,210 0,070	2,47	0,166	101 kg					107 kg	13 1,9208 15 44	0,005 0,005			
х	1 3.1 3.2 4+5											98 kg	15 1,583 28 26	0,005 0,005		0,002	101 kg	8 1,0741 16 54	0,200 0,210	0,980	0,218	109 kg	26 0,8896 21 34	0,070 0,010		0,066	108 kg	17 1,3947 46 24		0,140	0,002	
Y	1 3.1 3.2 4+5						115 kg					95 kg					107 kg					107 kg					102 kg					

Г		T		2		···	1		7			1		12				·····	17		····	<u> </u>		22		·	27					
N∘Mſ	ESTRA	P.T.	P.P.	% Au gr/t	%Au libre gr7t ^e	Ley gr/t	Р.Т.	P.P.	% Au gr/t	%Au Libre gr/t	Ley gr/t	P.T.	P.P.	% Au gr/t	%Au Tihre gr/t	Ley gr/t	Р.Т.	P.P.	% Au gr/t	% Au libre gr/t	Ley gr/t	P.T.	P.P.	% Au gr/t	%Au libre gr/t	Ley gr/t	P.T.	P.P.	%Au gr/t	% Au libre gr/t	Ley gr/t	
0	1 3.1 3.2 4+5											100 kg	18 0,9412 30 29	0,010 0,010	0,320	0,015	98 kg	19 0,8235 28 32	0,015 0,005	0,360	0,014	100 kg	24 0,940 32 29	0,005 0,005	0,690	0,010	106 kg	24 0,9925 21 30	0,010 0,005	0,180	0,007	
PP	1 3.1 3.2 4+5	150 kg	14 2,5883 63 47	0,740 0,370	2,12	0,605						103 kg	15 1,1311 35 33	0,030 0,140	0,420	0,086		10 1,0027 28 37	0,400 0,305	1,890	0,370		20 1,565,8 42 36	0,005 0,005	0,330	0,010	110 kg	23 0,939 23 31	0,005	1,580	0,028	
Q	1 3.1 3.2 4+5	81 kg	15 1,136,3 18 31	0,030 0,0015	0,35	0,018	104 kg	17 1,8694 25 26	0,230 0,130	1,47	0,224	114 kg					110 kg	18 1,6018 35 32	0,050 0,190	1,000	0,136	100 kg	29	0,100 0,185	2,470	0,179	110 kg	16 0,643,3 29 45	0,345 1,060	0,250	0,775	
R	1 3.1 3.2 4+5											102 kg	21 1,2677 24 33	0,080 0,065	0,160	0,072	106 kg	23 0,6436 23 35	0,035 0,010	0,850	0,029	100 kg	27 0,7559 19 28	0,059 0,065	0,650	0,067	105 kg		0,020 0,010		0,010	
S	1 3.1 3.2 4+5											97 kg	17 2,3052 34 18	0,175 0,030	0,640	0,146	98 kg	25 1,194 32 23	0,550 0,900	2,27	0,730	104 kg	43	0,010 0,185	0,060	0,055	102 kg					
Т	1 3.1 3.2 4+5											100 kg	13 1,105 29 26	0,400 0,005	2,190	0,568	100 kg	17 1,1899 45 19	0,415 0,185	2,27	0,442	100 kg	15 0,6406 24 18	0,015 0,035	0,250	0,027	101 kg	22 1,3896 31 23	0,080 0,170	0,480	0,127	
Ü	1 3.1 3.2 4+5											99 kg	17 2,2787 34 23	0,043 0,015	0,580	0,053	106 kg					114 kg	31 1,5539 28 17	0,160 0,035	1,160	0,146	102 kg					
V	1 3.1 3.2 4+5											102 kg	12 0,5177 23 49	0,005 0,015		0,013		23 1,0218 28 37	0,210 0,070	2,47	0,166	101 kg					107 kg	13 1,9208 15 44	0,005 0,005			
Х	1 3.1 3.2 4+5											98 kg	15 1,583 28 26	0,005 0,005		0,002	101 kg	8 1,0741 16 54	0,200 0,210	0,980	0,218	109 kg	26 0,8896 21 34	0,070 0,010		0,066	108 kg	17 1,3947 46 24		0,140	0,002	
Y	1 3.1 3.2 4+5						115 kg					95 kg					107 kg					107 kg					102 kg					

ı

4

Г		T		2		···	1		7			1		12				·····	17		····	<u> </u>		22		·	27					
N∘Mſ	ESTRA	P.T.	P.P.	% Au gr/t	%Au libre gr7t ^e	Ley gr/t	Р.Т.	P.P.	% Au gr/t	%Au Libre gr/t	Ley gr/t	P.T.	P.P.	% Au gr/t	%Au Tihre gr/t	Ley gr/t	Р.Т.	P.P.	% Au gr/t	% Au libre gr/t	Ley gr/t	P.T.	P.P.	% Au gr/t	%Au libre gr/t	Ley gr/t	P.T.	P.P.	%Au gr/t	% Au libre gr/t	Ley gr/t	
0	1 3.1 3.2 4+5											100 kg	18 0,9412 30 29	0,010 0,010	0,320	0,015	98 kg	19 0,8235 28 32	0,015 0,005	0,360	0,014	100 kg	24 0,940 32 29	0,005 0,005	0,690	0,010	106 kg	24 0,9925 21 30	0,010 0,005	0,180	0,007	
PP	1 3.1 3.2 4+5	150 kg	14 2,5883 63 47	0,740 0,370	2,12	0,605						103 kg	15 1,1311 35 33	0,030 0,140	0,420	0,086		10 1,0027 28 37	0,400 0,305	1,890	0,370		20 1,565,8 42 36	0,005 0,005	0,330	0,010	110 kg	23 0,939 23 31	0,005	1,580	0,028	
Q	1 3.1 3.2 4+5	81 kg	15 1,136,3 18 31	0,030 0,0015	0,35	0,018	104 kg	17 1,8694 25 26	0,230 0,130	1,47	0,224	114 kg					110 kg	18 1,6018 35 32	0,050 0,190	1,000	0,136	100 kg	29	0,100 0,185	2,470	0,179	110 kg	16 0,643,3 29 45	0,345 1,060	0,250	0,775	
R	1 3.1 3.2 4+5											102 kg	21 1,2677 24 33	0,080 0,065	0,160	0,072	106 kg	23 0,6436 23 35	0,035 0,010	0,850	0,029	100 kg	27 0,7559 19 28	0,059 0,065	0,650	0,067	105 kg		0,020 0,010		0,010	
S	1 3.1 3.2 4+5											97 kg	17 2,3052 34 18	0,175 0,030	0,640	0,146	98 kg	25 1,194 32 23	0,550 0,900	2,27	0,730	104 kg	43	0,010 0,185	0,060	0,055	102 kg					
Т	1 3.1 3.2 4+5											100 kg	13 1,105 29 26	0,400 0,005	2,190	0,568	100 kg	17 1,1899 45 19	0,415 0,185	2,27	0,442	100 kg	15 0,6406 24 18	0,015 0,035	0,250	0,027	101 kg	22 1,3896 31 23	0,080 0,170	0,480	0,127	
Ü	1 3.1 3.2 4+5											99 kg	17 2,2787 34 23	0,043 0,015	0,580	0,053	106 kg					114 kg	31 1,5539 28 17	0,160 0,035	1,160	0,146	102 kg					
V	1 3.1 3.2 4+5											102 kg	12 0,5177 23 49	0,005 0,015		0,013		23 1,0218 28 37	0,210 0,070	2,47	0,166	101 kg					107 kg	13 1,9208 15 44	0,005 0,005			
Х	1 3.1 3.2 4+5											98 kg	15 1,583 28 26	0,005 0,005		0,002	101 kg	8 1,0741 16 54	0,200 0,210	0,980	0,218	109 kg	26 0,8896 21 34	0,070 0,010		0,066	108 kg	17 1,3947 46 24		0,140	0,002	
Y	1 3.1 3.2 4+5						115 kg					95 kg					107 kg					107 kg					102 kg					

ı

4